Keeping old computers alive for deeper understanding of computer architecture

Hisanobu Tomari and Kei Hiraki The University of Tokyo

Background

- There are a number of options and trade-offs for designing a computer system
 - Instruction set design/instruction encoding
 - Architectural registers
 - Word length, ...
- Different implementation examples help better understanding

Showing Different Implementations?

- Computers students can access are limited.
 - x86_64, ARM
- Nice to have more examples such as:
 - Alpha, SPARC, MIPS, PA-RISC, etc.
- These systems are disposed and not available

Previous Approach: emulators/simulators

- Accuracy is dubious/difficult to evaluate
 - Temporal accuracy: execution time differs from real machine
 - Result accuracy: execution result differs from real machine
- Legal problems (firmware, operating system)
- Difficulty of full-system simulation
- Often easier to repair/restore old machines

Our Approach

- Restore old systems and allow students to access them
 - Help students understand computer architecture better by using wider variety of computer systems
- Enabling students to
 - Get interested in computer architectures
 - Witness how computers have settled to what they are today

Teaching Context

- Target: third-year undergraduate students in an information science department
- Students have knowledge of programming in assembly (PowerPC)
- Students implement original processor on an FPGA in the next semester [Sugawara, 2004]

Course Overview

- 13 lectures in a course
 - Each lecture is 90 minutes long
 - ~8 lectures are used to explain concepts such as:
 - Pipelining, Branch Prediction, Out-of-order Execution, Speculative Execution
 - The other classes are students' presentations

Assignment Details

- Students are divided into 10+ teams
- Each team
 - has 2-3 members
 - is assigned to an instruction set architecture
 - talks about characteristics and features about the ISA after reading the manual
 - writes a program that calculate an inner sum of two vectors, in assembly

Assignment Objective

- Grasp different design goals through learning about different processor implementations
- Learn to read the processor manuals

• Learn to like computer architectures

Keeping Historic Systems Alive

- Most museum-type efforts are focused on storing non-working computers in shelves
 - impossible to verify program for them
- With working systems one can measure
 - power consumption
 - performance using new compiler technique
 - performance with new benchmark
 - other parameters as they become important

Restoration

Removing the plastic mold

Restoration

Replacing capacitors

Restoration

Reworking damaged PCB

- So far, >250 systems have been kept in working condition
- Instruction set architectures:
 - Alpha, ARM, i860, IA-64, 68K, MIPS, PA-RISC
 - PowerPC, SH, SPARC, SX, VAX, x86, x86_64
 - Z80, 6502, 6809, ...

NEC SX-6i

Commodore Amiga 500

Students' slides

VAX instruction set (following slides are prepared by Yuichiro Oyabu)

Instruction formats

operation code + operand specifier (address mode + additional information)

addressing mode

n

0

Table 8–6 Program Counter Addressing

Hex	Dec	Name	Asse	embler		
8	8	Immediate	I^#c	onstant	_	
9	9	Absolute	@#a	ddress		
A	10	Byte relative	B^ae	ddress		
В	11	Byte relative	@B^	address		
		deferred				
С	12	Word relative	W^a	ddress		
D	13	Word relative	@W′	` address		
		deferred				
Ε	14	Longword	L^ac	ddress		
		relative				_
F	15	Longword	@L^	address		E
		relative deferred	7 4	3 2	1 0	
			mode	1 1	1 1	

Hex	Dec	Name	Assembler
0–3	0–3	Literal	S^#literal
4	4	Indexed	i[Rx]
5	5	Register	Rn
6	6	Register deferred	(Rn)
7	7	Autodecrement	-(Rn)
8	8	Autoincrement	(Rn)+
9	9	Autoincrement	@(Rn)+
		deferred	
А	10	Byte displacement	B^D(Rn)
В	11	Byte displacement	@B^D(Rn)
		deferred	
С	12	Word displacement	W^D(Rn)
D	13	Word displacement	@W^D(Rn)
		deferred	
Ε	14	Longword displacement	L^D(Rn)
F	15	Longword displacement	@L^D(Rn)
		deferred	7 43
Iran	ich	Mode Address	ing mode rea
	7	0 15	
		displ	displ

Table 8–5 General Register Addressing

"orthogonality"

- Independence of instruction type and addressing modes
 - All addressing modes are accessible by all inst's

Easiest example : mov inst. MOVL R1, R2 register MOVL(R1), (R2) register indirect On powerpc each instruction is encoded together with addressing modes

Actual code: inner product

#NO APP .file "test.c" .text .align 1 .globl main .type main, @function main: .word 0x0 %sp movab -812(%sp), clrl -8(%fp) clrl -12(%fp) jbr .L2

※will replace with hand-written one later

.L3:

movl -12(%fp),%r0 moval 0[%r0],%r0 addl2 %fp,%r0 movl -412(%r0),%r1 movl -12(%fp),%r0 moval 0[%r0],%r0 addl2 %fp,%r0 movl -812(%r0),%r0 mull2 %r1,%r0 addl2 %r0,-8(%fp) incl -12(%fp) .L2: cmpl -12(%fp),\$99 jleq .L3 clrl %r0 ret main, .-main .size

Data types and reds

データタイプ:14種類

Byte, Word, Longword, Quadword,

Octaword, F floating, D floating, G floating,

H floating, Variable-Length Bit Field,

Character String, Trailing Numeric String,

Leading Separate Numeric String,

Packed Dicimal String

・ レジスタ: 16個の汎用32ビットレジスタ

R15:PCプログラム・カウンタ

R14:SPスタックポインタ

R13:FPフレームポインタ

R12: APアーギュメントポインタ

R11-R0:汎用

Table 3-1 Special Register Us	age
-------------------------------	-----

Register	Hardware Use	Conventional Software Use	
RO	Results of POLY,CRC; length counter in character & decimal instructions	Results of functions, status of services (not saved or restored on procedure call)	
R1	Result of POLYD; address counter in character & decimal instructions	Result of functions (not saved or restored on pro-	
R2, R4	Length counter in character & decimal instructions	any	
R3, R5	Address counter in character & decimal instructions	any	
R6-R11	None	any	
AP (R12)	Argument pointer saved & loaded by CALL, restored by RET	Argument pointer (base address of argument list)	
FP (R13)	Frame pointer saved & loaded by CALL, used & restored by RET	Frame pointer; condition signalling	
SP (R14)	Stack pointer	Stack pointer	
PC (R15)	Program counter	Program counter	

Characteristic instruction

・ POLY—polynomial e.g. calculation of sin(1)(x/1!-x**3/3!+x**5/5!で近似) POLYF #1, #5, PTABLE PTABLE:

> .FLOAT 0.008333 .FLOAT 0.0 .FLOAT 0.0 .FLOAT -0.166666 .FLOAT 0.0 .FLOAT 1.0 .FLOAT 0.0

- Queues and stacks—makes it easier to write epilogie and prologue
- CRC—error detection in one instruction
- EDITPC—function for editing

VAX station 4000 60

NetBSD has been set up to the student's preferences

Student's slides: Remarks

- Students presents about:
 - Instruction set and encoding
 - Data types
 - Registers
 - Characteristic instructions/features
- Writes program to calculate inner product
- Verifies their interpretation of manuals using real system
- Evaluate the performance of real implementation

Conclusions

- Old computers help students understand concepts of computer architectures better
 - Draws more attention than emulators
- Keeping them in working condition takes a lot of effort
- Students interactively feel the difference of processing speed in person

Measurement results

- As we repair old systems, benchmarks are done
- Aids quantitative understanding of computers through
 - Performance
 - Power consumption
 - Applying different evaluation methods
- Same/similar compiler, optimization flags can be used across wide generation of systems

Dhrystone, VAX MIPS

Power consumption of Single-socket systems

STREAM - CFP2000

There are much more data

 Web interface to compare results has been developed and deployed at

http://computer-zoo.org/				
ets benchmark result	s and power consumption data of 70+ compu- Parallel Benchmarks (OpenMP and serial), SPEC	ter systems from 1989 to latest ones. CPU2000 and SPEC CPU2006 benchmarks!	•2011 H.Tomari+. This is a public domain software.	
Graph generator	Computer comparator			
*5				
+ 4		0.01		
13	100 ¹⁰⁰	99 - E		
		+		
2	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
•				
⊑ □⊑ ∎				
1980	1990 2000	2010		
k on a data point for a	letails of the system		Clear machine description	
draw Set logscale	y 🗆 set logscale x			
vears: 1980 to 2015 x86 ✓ m68k ✓ sparc (J <mark>vax</mark> I mips I i860 I parisc I ppc I alpha I si	ı ♂sx ♂arm ♂x86_64 ♂ia-64 ♂X86_64 ♂	tilera	
nput: •Geometric m	ean↓ ○Harmonic mean↓ ○Sum↓ □Divide by	processor freq. Divide by system power		
cores	□ SER is.A	255.vortex	462.libquantum	
threads	SER lu.A	256.bzip2	□ 464.h264ref	

Wishlist:

PDP-11 64b PA-RISC Transputer (evaluation kit preferred)