

Keeping old computers alive for deeper
understanding of computer architecture

Hisanobu Tomari and Kei Hiraki
The University of Tokyo

Background

● There are a number of options and trade-offs
for designing a computer system
– Instruction set design/instruction encoding

– Architectural registers

– Word length, ...

● Different implementation examples help better
understanding

Showing Different Implementations?

● Computers students can access are limited.
– x86_64, ARM

● Nice to have more examples such as:
– Alpha, SPARC, MIPS, PA-RISC, etc.

● These systems are disposed and not available

Alpha SPARC MIPS PA-RISC

Previous Approach:
emulators/simulators

● Accuracy is dubious/difficult to evaluate
– Temporal accuracy: execution time differs from real

machine

– Result accuracy: execution result differs from real
machine

● Legal problems (firmware, operating system)
● Difficulty of full-system simulation

● Often easier to repair/restore old machines

Our Approach

● Restore old systems and allow students to
access them
– Help students understand computer architecture

better by using wider variety of computer systems

● Enabling students to
– Get interested in computer architectures

– Witness how computers have settled to what they
are today

Teaching Context

● Target: third-year undergraduate students in an
information science department

● Students have knowledge of programming in
assembly (PowerPC)

● Students implement original processor on an
FPGA in the next semester [Sugawara, 2004]

Assembly
 Programming

This
Course

CPU
 Designing

FPGA

Course Overview

● 13 lectures in a course
– Each lecture is 90 minutes long

– ~8 lectures are used to explain concepts such as:
● Pipelining, Branch Prediction, Out-of-order Execution,

Speculative Execution

– The other classes are students' presentations

General lessons Students' presentations

Assignment Details

● Students are divided into 10+ teams
● Each team

– has 2-3 members

– is assigned to an instruction set architecture

– talks about characteristics and features about the
ISA after reading the manual

– writes a program that calculate an inner sum of two
vectors, in assembly

Assignment Objective

● Grasp different design goals through learning
about different processor implementations

● Learn to read the processor manuals

● Learn to like computer architectures

Keeping Historic Systems Alive

● Most museum-type efforts are focused on
storing non-working computers in shelves
– impossible to verify program for them

● With working systems one can measure
– power consumption

– performance using new compiler technique

– performance with new benchmark

– other parameters as they become important

Restoration

● Removing the plastic mold

Restoration

● Replacing capacitors

Restoration

● Reworking damaged PCB

● So far, >250 systems have been kept in
working condition

● Instruction set architectures:
– Alpha, ARM, i860, IA-64, 68K, MIPS, PA-RISC

– PowerPC, SH, SPARC, SX, VAX, x86, x86_64

– Z80, 6502, 6809, …

NEC SX-6i

Commodore Amiga 500

Students' slides

VAX instruction set
(following slides are prepared by Yuichiro Oyabu)

opcode (1 or 2 byte(s))

addressing mode

Branch Mode Addressing

Instruction formats
operation code + operand specifier
(address mode + additional information)

“orthogonality”

• Independence of instruction type and
addressing modes

• All addressing modes are accessible by all inst's
Easiest example：mov inst.

MOVL R1, R2　　register

MOVL(R1), (R2)　register indirect

On powerpc each instruction
is encoded together with
addressing modes

Actual code: inner product

#NO_APP
 .file "test.c"
 .text
 .align 1
.globl main
 .type main,
@function
main:
 .word 0x0
 movab -812(%sp),%sp
 clrl -8(%fp)
 clrl -12(%fp)
 jbr .L2

.L3:
 movl -12(%fp),%r0
 moval 0[%r0],%r0
 addl2 %fp,%r0
 movl -412(%r0),%r1
 movl -12(%fp),%r0
 moval 0[%r0],%r0
 addl2 %fp,%r0
 movl -812(%r0),%r0
 mull2 %r1,%r0
 addl2 %r0,-8(%fp)
 incl -12(%fp)
.L2:
 cmpl -12(%fp),$99
 jleq .L3
 clrl %r0
 ret
 .size main, .-main

※will replace with hand-written one later

Data types and regs
• データタイプ : １４種類

Byte, Word, Longword, Quadword,

Octaword, F_floating, D_floating, G_floating,

H_floating, Variable-Length Bit Field,

Character String, Trailing Numeric String,

Leading Separate Numeric String,

Packed Dicimal String

• レジスタ : 16個の汎用３２ビットレジスタ

R15:PCプログラム・カウンタ

R14:SPスタックポインタ

Ｒ１３：ＦＰフレームポインタ

Ｒ１２：ＡＰアーギュメントポインタ

Ｒ１１－Ｒ０：汎用

Characteristic instruction

• ＰＯＬＹーpolynomial
e.g. calculation of sin(1)（x/1!-x**3/3!+x**5/5!で近似）
POLYF #1, #5, PTABLE
PTABLE:

.FLOAT 0.008333

.FLOAT 0.0

.FLOAT 0.0

.FLOAT -0.166666

.FLOAT 0.0

.FLOAT 1.0

.FLOAT 0.0
• Queues and stacksーmakes it easier to write epilogie and prologue
• CRCーerror detection in one instruction
• ＥＤＩＴＰＣーfunction for editing

VAXstation 4000 60
NetBSD has been set up to the student's preferences

Student's slides: Remarks

● Students presents about:
– Instruction set and encoding

– Data types

– Registers

– Characteristic instructions/features

● Writes program to calculate inner product
● Verifies their interpretation of manuals using real

system
● Evaluate the performance of real implementation

Conclusions

● Old computers help students understand
concepts of computer architectures better
– Draws more attention than emulators

● Keeping them in working condition takes a lot of
effort

● Students interactively feel the difference of
processing speed in person

Measurement results

● As we repair old systems, benchmarks are done
● Aids quantitative understanding of computers

through
– Performance

– Power consumption

– Applying different evaluation methods

● Same/similar compiler, optimization flags can be
used across wide generation of systems

Dhrystone, VAX MIPS

Power consumption of
Single-socket systems

STREAM - CFP2000

There are much more data

● Web interface to compare results has been
developed and deployed at

 http://computer-zoo.org/

Wishlist:

PDP-11
64b PA-RISC

Transputer (evaluation kit preferred)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

