

Cortex-A15

Cortex-A15

● ARMv7
– Cortex-A15世代から整数除算命令が入った

● NVIDIA Tegra K1, 4+1-core, 2.1 GHz
– DDR3L 4GB

Chrome OS

● Linux + Glibcの割と普通の構成だった
● シェルにも簡単に降りられる
● デフォルトではコンパイラやヘッダは入っていない

– /は書き換えない方が話が簡単そう
● 自動アップデート機能との絡み

● OpenSSHやtar, xzは入ってる

コンパイラ

● Chromium OS開発環境でクロスコンパイラ作成
● クロスコンパイラでターゲットホストのコンパイラ作
成
– これは動的リンクがうまく行かない（ありがち）

● ターゲットで上記コンパイラを使ってコンパイラをコ
ンパイル
– これを2回ほど繰り返すとCINT2006のVerification

errorが出ないコンパイラができる（ありがち）

学び

● いくつかのLinux環境では/usr/lib/libc.so,
/usr/lib/libpthread.soはELFファイルではなくリンカ
スクリプト

● ここにlibc.aやlibpthread.aのパスがハードコードさ
れている

比較対象

Tegra K1 (Cortex-A15) 2100

Core i7 5960X SR20Q 3500

SPARC T4 2848

Phenom X4 9350e 2000

CINT2006 (完走)

40
0.

pe
rlb

en
ch

40
1.

bz
ip2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
lan

cb
m

k

m
ea

n

0

10

20

30

40

50

60

70

80

Tegra K1 (Cortex-A15)

Core i7 5960X SR20Q

SPARC T4

Phenom X4 9350e

ARM注意点

● charがunsigned char (-fsigned-char)
● NEON FPUはdenormal非対応（0扱い)

● ABIがたくさんある
● GCCの問題は多め

– そもそもundefined behaviorを踏んでるコード多い
– -fno-aggressive-loop-optimization

● x86/SPARCよりストレージモデルが緩い

結論

● 416.gamess, 482.sphinx3 (CFP2006)もミーティ
ング終了頃には終わっているはず

● Chrome OSはLinux環境として使える
● Cortex-A15はCortex-A9の倍近く早くなっていた

– Cortex-A57より少し遅いくらい
– X-Gene1と同じくらい
– ARMv8命令セットにしたことによる性能向上というわけ
ではなかったらしい

