

TM

TM on Haswell

● RTM
– xbegin / xend 命令でトランザクション部をはさむ

● HLE
– xacquire / xrelease プレフィックスを既存のロッ
ク取得 cmpxchg やmovにつけるだけ

– Lock Elision専用

RTM Lock Elision Example

.retry:
xbegin .transaction_failed
mov eax, dword [lock]
test eax,0x1
jz .transaction
xabort 0xff

.transaction:
; transaction
xend

.transaction_failed:
条件を見てjmp retryするかlock取得

HLE Example

.get_lock:

mov eax, 0x1

xacquire xchg eax, dword [lock]

test eax,eax

jnz .get_lock

; transaction

xrelease mov 0, dword [lock]

Haswell TM parameters

● Read-set size 4M (i7) or 6.5M (Xeon) = 実測
– LLCまで追っているが、これより大きいと、トラ
ンザクション成功予測機構が失敗を予測

● トランザクション突入直後に殺される
● Write-set size

– 24K位まで (実測)
● L1=32KBだが、Readと同様の状況

トランザクション成功予測機構
● 存在はマニュアルには書いていない

トランザクションのオーバーヘッド

● 空のトランザクション ~30 ns
● トランザクショナル・アボート

– 1000 ns (アボート予測成功時)
– 8000+ ns (アボート予測失敗時)

STAMP

● Lock Elisionを使っている
● STAMPをRTM/HLEに移植した
● RTM実装では失敗時のリトライ回数やリトラ
イするかどうかをチューニングした

● HLEはそういうインターフェースは無い
– でも使うのは簡単

RTMのチューニングパラメータ

● 理由を問わず(Intelのみ) リトライは16回まで
– RTMではPersistent AbortでなくてもRetryビット
が立っていなかったり

– Capacity理由でないのにCapacityビットが立って
いたりするため

● その他色々

測定環境

● Core i7 4770S 3.10 GHz
– Turbo boost機能はオフ
– 動的なコアの逓倍率変化もオフ

1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5

GENOME

Lock
HLE
RTM

#Threads

S
pe

ed
up

GENOME アボート理由

● 4 threads ● 8 threads
2489220 tx_enter

2192610 tx

0 global_lock_acquired

9763869 abort

0 explicit

3874396 retry

3875316 conflict

5710884 capacity

0 debug

0 nested

2489220 tx_enter

2467969 tx

0 global_lock_acquired

641006 abort

0 explicit

116588 retry

116842 conflict

351768 capacity

0 debug

0 nested

1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Intruder

Lock
HLE
RTM

Number of threads

S
pe

ed
up

1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5

KMEANS-HIGH

Lock
HLE
RTM

Number of Threads

S
pe

ed
up

1 2 4 8
0

1

2

3

4

5

6

KMEANS-LOW

Lock
HLE
RTM

#threads

S
pe

ed
up

1 2 4 8
0

0.2

0.4

0.6

0.8

1

1.2

Labyrinth

Lock
HLE
RTM

#threads

S
pe

ed
up

Labyrinth (8 threads)

● 9回目で成功する
● 半数はロックになる 1040 tx_enter

521 tx

0 global_lock_acquire
d

8824 abort

0 explicit

28 retry

28 conflict

19 capacity

0 debug

0 nested

1 2 4 8
0

0.5

1

1.5

2

2.5

3

SSCA2

Lock
HLE
RTM

#Threads

S
pe

ed
up

1 2 4 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Yada

Lock
HLE
RTM

#Threads

S
pe

ed
up

Yada (4 threads)

● 平均4回リトライして5回目で成功
● アドレスコンフリクトしてる

2574594 tx_enter

2161431 tx

0 global_lock_acquired

8040193 abort

0 explicit

5564264 retry

5564342 conflict

2431261 capacity

0 debug

0 nested

アボート率を減らせば性能向上?

● アボートするのは大体決まったリージョンの
トランザクション
– 最初からロックにすることでアボートのオーバー
ヘッド減らせる？

– Delinquent transaction除去

● アボート率は減ったが、性能向上せず
– ロックになっているのだから当たり前

結論

● HLEはチューニング効かない
– RTMを使うべき

● 予測機能の機嫌次第ではアボートされる
– 非常に厄介

